2,727 research outputs found

    SXP 323 - an unusual X-ray binary system in the Small Magellanic Cloud

    Full text link
    Spectroscopic observations taken with the VLT/UVES telescope/instrument are presented of the unusual Small Magellanic Cloud (SMC) X-ray binary system SXP 323 = AX J0051-733. This system shows a clear modulation at 0.71d in long term optical photometry which has been proposed as the binary period of this system. The high resolution optical spectra, taken at a range of phases during the 0.71d cycle, rule out this possibility. Instead it is suggested that this long-term effect is due to Non Radial Pulsations (NRP) in the Be star companion to SXP 323. In addition, the spectra show clear evidence for major changes in the (V/R) ratio of the double peaks of the Balmer lines indicative of asymmetries in the circumstellar disk. The complex structure of the interstellar lines are also discussed in the context of the SMC structure.Comment: Accepted in MNRA

    Hubbard model as an approximation to the entanglement in nanostructures

    Get PDF
    We investigate how well the one-dimensional Hubbard model describes the entanglement of particles trapped in a string of quantum wells. We calculate the average single-site entanglement for two particles interacting via a contact interaction and consider the effect of varying the interaction strength and the interwell distance. We compare the results with the ones obtained within the one-dimensional Hubbard model with on-site interaction. We suggest an upper bound for the average single-site entanglement for two electrons in M wells and discuss analytical limits for very large repulsive and attractive interactions. We investigate how the interplay between interaction and potential shape in the quantum-well system dictates the position and size of the entanglement maxima and the agreement with the theoretical limits. Finally, we calculate the spatial entanglement for the quantum-well system and compare it to its average single-site entanglement

    A 0535+26: Back in business

    Full text link
    In May/June 2005, after 10 years of inactivity, the Be/X-ray binary system A 0535+26 underwent a major X-ray outburst. In this paper data are presented from 10 years of optical, IR and X-ray monitoring showing the behaviour of the system during the quiescent epoch and the lead up to the new outburst. The results show the system going through a period when the Be star in the system had a minimal circumstellar disk and then a dramatic disk recovery leading, presumably, to the latest flare up of X-ray emission. The data are interpreted in terms of the state of the disk and its interaction with the neutron star companion.Comment: Accepted for publication in MNRA

    Discovery of Radio Emission from Transient Anomalous X-ray Pulsar XTE J1810-197

    Get PDF
    We report the first detection of radio emission from any anomalous X-ray pulsar (AXP). Data from the Very Large Array (VLA) MAGPIS survey with angular resolution 6" reveals a point-source of flux density 4.5 +/- 0.5 mJy at 1.4 GHz at the precise location of the 5.54 s pulsar XTE J1810-197. This is greater than upper limits from all other AXPs and from quiescent states of soft gamma-ray repeaters (SGRs). The detection was made in 2004 January, 1 year after the discovery of XTE J1810-197 during its only known outburst. Additional VLA observations both before and after the outburst yield only upper limits that are comparable to or larger than the single detection, neither supporting nor ruling out a decaying radio afterglow related to the X-ray turn-on. Another hypothesis is that, unlike the other AXPs and SGRs, XTE J1810-197 may power a radio synchrotron nebula by the interaction of its particle wind with a moderately dense environment that was not evacuated by previous activity from this least luminous, in X-rays, of the known magnetars.Comment: 13 pages, 1 figure, to appear in ApJ Letter

    Feasibility of approximating spatial and local entanglement in long-range interacting systems using the extended Hubbard model

    Full text link
    We investigate the extended Hubbard model as an approximation to the local and spatial entanglement of a one-dimensional chain of nanostructures where the particles interact via a long range interaction represented by a `soft' Coulomb potential. In the process we design a protocol to calculate the particle-particle spatial entanglement for the Hubbard model and show that, in striking contrast with the loss of spatial degrees of freedom, the predictions are reasonably accurate. We also compare results for the local entanglement with previous results found using a contact interaction (PRA, 81 (2010) 052321) and show that while the extended Hubbard model recovers a better agreement with the entanglement of a long-range interacting system, there remain realistic parameter regions where it fails to predict the quantitative and qualitative behaviour of the entanglement in the nanostructure system.Comment: 6 pages, 5 figures and 1 table; added results with correlated hopping term; accepted by EP

    SXP 7.92: A Recently Rediscovered Be/X-ray Binary in the Small Magellanic Cloud, Viewed Edge On

    Get PDF
    We present a detailed optical and X-ray study of the 2013 outburst of the Small Magellanic Cloud Be/X-ray binary SXP 7.92, as well as an overview of the last 18 years of observations from OGLE (Optical Gravitational Lensing Experiment), RXTE, Chandra and XMM-Newton. We revise the position of this source to RA(J2000) = 00:57:58.4, Dec(J2000) = −72:22:29.5 with a 1σ uncertainty of 1.5 arcsec, correcting the previously reported position by Coe et al. by more than 20 arcmin. We identify and spectrally classify the correct counterpart as a B1Ve star. The optical spectrum is distinguished by an uncharacteristically deep narrow Balmer series, with the Hα line in particular having a distinctive shell profile, i.e. a deep absorption core embedded in an emission line. We interpret this as evidence that we are viewing the system edge on and are seeing self-obscuration of the circumstellar disc. We derive an optical period for the system of 40.0 ± 0.3 d, which we interpret as the orbital period, and present several mechanisms to describe the X-ray/optical behaviour in the recent outburst, in particular the ‘flares'and ‘dips’ seen in the optical light curve, including a transient accretion disc and an elongated precessing disc

    INTEGRAL deep observations of the Small Magellanic Cloud

    Full text link
    Deep observations of the Small Magellanic Cloud (SMC) and region were carried out in the hard X-ray band by the INTEGRAL observatory in 2008-2009. The field of view of the instrument permitted simultaneous coverage of the entire SMC and the eastern end of the Magellanic Bridge. In total, INTEGRAL detected seven sources in the SMC and five in the Magellanic Bridge; the majority of the sources were previously unknown systems. Several of the new sources were detected undergoing bright X- ray outbursts and all the sources exhibited transient behaviour except the supergiant system SMC X-1. They are all thought to be High Mass X-ray Binary (HMXB) systems in which the compact object is a neutron star.Comment: 7 pages, 10 figures Accepted for publication in MNRA

    Two populations of X-ray pulsars produced by two types of supernovae

    No full text
    Two types of supernova are thought to produce the overwhelming majority of neutron stars in the Universe. The first type, iron-core collapse supernovae, occurs when a high-mass star develops a degenerate iron core that exceeds the Chandrasekhar limit. The second type, electron-capture supernovae, is associated with the collapse of a lower-mass oxygen-neon-magnesium core as it loses pressure support owing to the sudden capture of electrons by neon and/or magnesium nuclei. It has hitherto been impossible to identify the two distinct families of neutron stars produced in these formation channels. Here we report that a large, well-known class of neutron-star-hosting X-ray pulsars is actually composed of two distinct sub-populations with different characteristic spin periods, orbital periods and orbital eccentricities. This class, the Be/X-ray binaries, contains neutron stars that accrete material from a more massive companion star. The two sub-populations are most probably associated with the two distinct types of neutron-star-forming supernovae, with electron-capture supernovae preferentially producing system with short spin period, short orbital periods and low eccentricity. Intriguingly, the split between the two sub-populations is clearest in the distribution of the logarithm of spin period, a result that had not been predicted and which still remains to be explaine

    The Relationship between Success Modeling and Fear of Success in College Students

    Get PDF
    This study examined fear of success (FOS) in relation to biological sex and success modeling. Students (N = 108) from a small, liberal arts college completed self-report measures of FOS, success modeling, and demographic factors. It was hypothesized that: (a) no sex differences would be found for FOS and (b) success modeling would be negatively related to FOS. Results indicated female participants reported higher levels of FOS than male participants and success modeling by parents but not by peers was negatively related to FOS. Thus, despite recent societal evidence of equitable achievement, women may still experience higher levels of FOS than men. Also, parental success modeling may be more influential than peer success modeling among college students

    The binary period and outburst behaviour of the SMC X-ray binary pulsar system SXP504

    Full text link
    A probable binary period has been detected in the optical counterpart to the X-ray source CXOU J005455.6-724510 = RX J0054.9-7245 = AXJ0054.8-7244 = SXP504 in the Small Magellanic Cloud. This source was detected by Chandra on 04 Jul 2002 and subsequently observed by XMM-Newton on 18 Dec 2003. The source is coincident with an Optical Gravitational Lensing (OGLE) object in the lightcurves of which several optical outburst peaks are visible at ~ 268 day intervals. Timing analysis shows a period of 268.6 +/- 0.1 days at > 99% significance. Archival Rossi X-ray Timing Explorer (RXTE) data for the 504s pulse-period has revealed detections which correspond closely with predicted or actual peaks in the optical data. The relationship between this orbital period and the pulse period of 504s is within the normal variance found in the Corbet diagram.Comment: Accepted by MNRAS. 1 LATEX page. 4 figure
    • …
    corecore